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Abstract
The Hartree–Fock–Slater model of atoms has been modified by using individual
values of the exchange parameter, αex, for each atom. Each value of αex

was adjusted to reproduce the empirical value of the first ionization energy
of the atom considered. The expectation values, energies and radial functions
for all elements of the periodic table have been evaluated on the basis of the
Hartree–Fock–Slater model and individual exchange parameters. A consistent
set of Slater type orbital single ζ valence atomic orbital exponents and energies
for all elements of the periodic table, suitable for orbital interaction analysis, is
presented. These exponents were calculated by fitting the 〈r〉STO moments
to numerical empirically adjusted 〈r〉HFS results. Qualitatively, the new
parameters compare well with Fitzpatrick and Murphy exponents and Mann
numerical Hartree–Fock 〈r〉HF moments and energy values but contain some
influence of correlation and relativistic phenomena.

1. Introduction

In principle, we can perform pseudopotential DFT molecular orbital calculations on systems
of almost any complexity. It is, however, often extremely profitable in terms of understanding
the orbital structure to relate the level arrangement in a complex system to that of a simpler
one. This kind of understanding can be reached through the orbital interaction approach [1, 2].
It is generally acknowledged that orbital interaction calculations are broadly divided into two
categories. The first category focuses on providing a conceptual framework for considering the
organization of experimental knowledge (understanding) [1, 2]. The second category generally
relates to modelling a particular experimental property of a large system. An excellent new
example of such a philosophy can be found in [3]. Although both categories are based on the
molecular orbital concept, and an effective one-electron Hamiltonian, H eff , they are notably
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different in terms of semi-empirical definition of matrix representation, Hµν = 〈χµ|H eff |χν〉,
on an atomic orbital basis. The choice of approach is generally a question of style and the
interpretation desired.

In the first approach the diagonal element, Hµµ, is estimated by the valence state ionization
potential (VSIP) of the atomic orbital χµ and the off-diagonal element Hµν is approximated as
a function of the overlap integral Sµν = 〈χµ|χν〉. In this approach, one should pay attention to
the parameters of atomic orbitals used to construct the matrix elements since only functional
dependence between Hµν and Sµν is the subject of a semi-empirical approximation. The firm
foundation of such an orbital interaction philosophy was given by Hoffmann [4] in 1963 under
the name extended Hückel (EH) theory. That approach used realistic atomic data (orbital
energies and exponents) in orbital interaction calculations. It means that the method does not
give all results accurately, but a universal parameter set can be used without suspicion that it
is wrong for a particular purpose [5].

In constructing the matrix representation in the second approach, the problem of empirical
parameters is treated more formally, sometimes avoiding any reference to their physical
meaning. We suppose that some or all quantities such as Hµµ, Hµν and/or Sµν , that enter the
EH method are assumed empirical parameters. Then their optimal values can be determined
from the condition that the calculated molecular properties agree either with the corresponding
experimental data or with the results of accurate calculations. Naturally, to ensure the generality
of such parameters, we should select them for a series of distinct systems and for various
physical properties. In the second approach, such a procedure has not so far been consistently
employed on a large scale [6]. For that reason, the method is sometimes called the ‘separated
parameters for separate problems approach’.

The primary goal of this article is to generate an empirically adjusted and consistent
set of valence orbital parameters for all elements of the periodic table, in the spirit of the first
approach. One-electron radial wavefunctions and orbital energies can be obtained numerically
by solution of the Hartree–Fock (HF) equations [7, 8]. However, for approximate comparative
orbital interactions, calculations (the EHT formalism) where high accuracy is not required,
simpler expressions for the radial wavefunctions are needed. Slater [9], long ago, recognized
this need and proposed the use of an exponential function to describe the radial part of each
atomic orbital (equation (1)).

R(r) = Nrn∗−1 exp(−ζ r), ζ = Z − s

n∗ . (1)

Values for n∗ and rules for calculating the screening constant, s, were given. These functions
(Slater orbitals) can be calculated for all elements of the periodic table but give poor
approximations for n∗ = 3 and upwards [10]. Subsequent workers retained the form of
equation (1), sometimes as a linear combination, and used a variety of methods to obtain
the optimum orbital exponent, ζ [11]. Such functions become known as Slater type orbitals
(STOs). A limiting factor of existing parameter sets in orbital interaction analysis remains,
in that they are not consistent and not accurate enough even in comparison with known
experimental atomic properties. To overcome this, we suggest the use of the empirically
adjusted Hartree–Fock–Slater (HFS) model of the atom [12] as the source of accurate data
for estimation of one-electron energies and exponents. The relationship between the HF and
the HFS description of atoms is well described in Herman and Skillman’s original book [13].
The HFS model of the atom has been used for orbital exponent evaluations by Fitzpatrick and
Murphy [14].
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2. Evaluation of individual values of statistical exchange parameters αex for atoms

The HFS model of the atom entails self-consistent solution of (equations (2)–(5))[
1
2∇2

1 + Veff
]
φi(1) = εiφi(1), (2)

where

Veff = −Z

r1
+

∫
ρ(2)

r12
dτ2 − 3αex

(
3

8π

)1/3

ρ1/3 (3)

and

ρ(1) =
∑

i

ni |φi(1)|2. (4)

The ground-state energy is then determined from the equation

E[ρ] =
∑

i

niεi − J [ρ] + Kex[ρ]. (5)

Our approach differs from the Fitzpatrick method in that the optimal exchange parameter,
αex, was estimated for each atom in the periodic table. Originally, this idea was introduced
by Slater and Johnson [15]. In section 4 of their paper, they have suggested a criterion for
determining a value of the parameterαex. The suggested scheme was to determine the parameter
αex in an atomic calculation and use the same values in molecular or solid-state calculations.
Next Schwarz examined two criteria for determining the exchange parameter αex [16, 17].
These criteria are (i) adjustment of the statistical total energy to the HF total energy, leading
to αHF, and (ii) satisfaction of the virial theorem, leading to αvt. Numerical calculations of
Schwarz show that individual αHF and αvt values are almost the same [16, 17] and differ by
not more than 0.001. But the HFS model of the atom used with αex values obtained according
to procedure (i) or (ii) has the same disadvantage as the pure HF model [7, 8], correlation and
relativistic phenomena are not included in such a model. It is consistent but not empirically
adjusted. For empirical adjustment, we need an atomic property that is known for all atoms
in the periodic table. According to the NIST Standard Reference Data Program [18], only the
first ionization energy meets this constraint, except for astatine. In this work, for empirical
adjustment, the individual value of the exchange parameter αex was fixed at a value that give an
exact reproduction of the experimental first ionization energy of the atom considered according
to Koopman’s theorem. In that way, some correlation (very low individual αex value of the
exchange parameter for Li) and relativistic phenomena (very high individual αex values for Pt,
Au and Hg) are partially included [12] as shown in table 1.

In the following, we shall only give the relevant computational details for this particular
case. The HFS calculations for atomic systems have been performed using the free-electron
density approximation (FDA) program [19]. For comparison of the numerical results, the
QCMP102 [20] package has been used. For evaluation of the individual exchange parameters
of the elements, accurate ionization energy data have been used [18]. The original free electron-
based universal αex parameter, introduced by Slater, equals 2

3 and yields acceptable results,
but sometimes other values are used [13, 14]. We have therefore modified the αex parameter
individually for each atom to achieve equality of the calculated and experimentally observed
first ionization energy. Results from the calculations for the whole periodic table are shown in
table 1. The mean value of αex is 0.756, with a standard deviation 0.081, the lowest observed
value, of lithium, is 0.540 and the highest, of gold, is 0.956.

Our goal is the construction of an empirically adjusted and consistent set of valence orbital
parameters for all elements of the periodic table in the spirit of the first approach above. It may
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Table 1. Empirically adjusted exchange parameters α (upper values), and corresponding virial ratio (lower values).
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Figure 1. Correlation of modified HFS total binding energy with HF binding energy for all elements
of the periodic table.
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Figure 2. Correlation of modified HFS 〈r〉 expectation values with HF values for all elements of
the periodic table.

be of particular importance to examine the computed properties of atoms in comparison with
accurate HF results [7, 8]. The questions are how our total binding energy values compare with
results of accurate HF calculations and what happen with radial expectation values when we
introduce an individual set of αex parameters. Figure 1 shows the correlation between minus
total atom energies and figure 2 the correlation between the 〈r〉 expectation values. The total
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binding energy values calculated by our modified method are slightly larger (atoms are more
stable) than HF values, and the modified HFS values are ∼0.3% bigger than the HF values.
The 〈r〉 expectation values calculated by our method are generally equal to or lower than HF
values by about 6.2% (atoms are more compact). Both effects can be explained as being due to
partial inclusion of electron correlation and relativistic phenomena by individual adjustment
of αex. As seen in table 1, computed values of the virial ratio do not exactly equal −2. The
difference shows a kind of price that we must pay for empirical parametrization of the HFS
model. The results of basis set-free comparisons with HF results shows that our modified HFS
model of atomic structure includes some correlation and relativistic phenomena. The modified
HFS model can be treated as a source of atomic data for construction of an empirically adjusted
and consistent set of valence orbital parameters for all elements of the periodic table.

3. Evaluation of empirically adjusted and consistent valence orbital parameter set for
orbital interaction calculations

Routine applications of orbital interactions normally use perturbation molecular orbital theory,
usually within the EHT formalism. These do not require extensive or highly accurate atomic
wavefunctions. However, a consistent set within and between members of a series is most
desirable. Typically, only a single exponent for the valence orbital is required, and each radial
wavefunction can be represented by a single normalized STO (equation (6)).

Rk(r) = (2ζ )k+1/2((2k)!)−1/2rk−1 exp(−ζ r). (6)

Each numerical radial function obtained by HF or HFS theory displays oscillatory behaviour.
For a given n and l the function has n−l−1 radial nodes, whereas a single STO has the property
of being always positive. This difficulty can be overcome, and the single STO representation
retained, by considering the equality of the radial expectation values for each atomic orbital
(equation (7)).

〈r〉STO = 〈r〉HFS. (7)

Although the analytic STO cannot represent this inner behaviour adequately, the above
approximation was considered desirable since the inner part of the radial function has an
unimportant role in determining orbital interaction energy. Consequently, a basis set with an
equal quality (single STO approximation) is more consistent. Optimal STO exponents ζ were
determined using the iteration technique to solve equality (7). The Mathematica ® package
was used to implement this procedure.

In all cases, the electronic configurations of the elements were those given by the NIST
standard reference data program [18]. For some elements, virtual unoccupied orbitals are of
interest [21]. Whenever such a situation occurred, exponents and orbital energies for both
ground and excited states were computed.

Valence orbital energy values are given for the whole periodic table in table 2 and
corresponding orbital exponents in table 3.

Qualitatively, the new parameters compare well with Fitzpatrick and Murphy’s exponents
[14] and Mann’s calculated numerical HF 〈r〉HF moments and energy values [7, 8]. The
differences are due to correlation and relativistic phenomena included by empirical estimation
of the exchange parameters αex for each atom under consideration. According to the HFS
model parametrization scheme, the energy of each HOMO orbital matches exactly the observed
ionization energy of the atom considered. These new energy and exponent values are
particularly useful for orbital interaction considerations according to the ‘EH theory’ idea
introduced by Hoffmann [4]. To date, no complete consistent and empirically adjusted set is
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Table 2. Energy of valence s-, p-, d- and f-orbitals of the elements (eV).
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Table 3. Single ζ Slater orbital exponents for valence s-, p-, d- and f-orbitals of the elements.
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available. Together with the universal force field (UFF) [22–24] as the geometry generator,
the proposed parameter set premises that the vast majority of chemical phenomena may be
qualitatively understood by judicious use of the very simple orbital interaction calculations.
The software needed for such an approach is now readily available [25]1. Generation of an
approximate geometry and subsequent orbital interaction analysis is also possible using MM+
force field2. Good results have also been obtained using SYBYL force field as the geometry
generator [26] and then transferring coordinates into YAeHMOP [27]3 through BabelWin
[28]. Transferring through Babel is also possible into BICON-CEDIT [29], ICON-EDiT [30],
CACAO [31] and CAESAR [32].

4. Choosing a Hückel constant k for an empirically adjusted and consistent valence
orbital parameter set

The off-diagonal elements of EH theory, Hµν (µ �= ν), represent the effects of bonding
between the atoms and are assumed to be proportional to the overlap, Hµν ∼ Sµν . An
approximation for differential overlap, referred to as the Mulliken approximation or generalized
Mulliken approximation, can be used to estimate the off-diagonal elements, Hµν [33]
(equations (8)–(10))

Hµν = k′Sµν(Hµµ + Hνν)

2
, (8)

where

k′ = k + δ2 + δ4(1 − k) (9)

and

δ = Hµµ − Hνν

Hµµ + Hνν

. (10)

The Hückel constant, k, has been inserted here as an adjustable parameter. It can be adjusted
to give the best agreement with experiment. It is found that a good value is somewhat larger
than would be indicated by the Mulliken approximation (k = 1.0). When one wishes to
obtain a rough value of k for estimating orbital energies (or better, differences in orbital
energies) in organic and organometallic compounds, hydrogen–hydrogen interactions are of
great importance. According to Koopmans’ theorem, the frontier orbital energies are given by
(equation (11)).

−εHOMO = I,

−εLUMO = A.
(11)

Experimental values of the ionization potential, I , and electron affinity, A, of the H2 molecule
are I = 15.4 eV and A = −2.0 eV [34]. Using the experimental bond length of the H2

molecule, 0.741 Å, the HOMO–LUMO gap, 17.4 eV, is reproduced with k = 1.3681. Note

1 Program ArgusLab 3.0.0 is distributed by Planaria Software: (http://www.planaria-software.com). The file
EHT.prm, containing the parameters described above for the ArgusLab 3.0.0 program can be obtained from the author
on request (e-mail at holo@altis.chem.pg.gda.pl). Since memory for ArgusLab is dynamically allocated, the size
of the calculation is limited only by the available system resources and the intrinsic limitations of the theories and
algorithms employed. The largest system calculated on the author’s PC (∼200 MB) was a metallo-protein containing
about 600 atoms. If you run calculations on bigger molecules, you will simply need more memory.
2 Program HyperChem is distributed by Hypercube, Inc. (http://www.hyper.com). The file Exhuckel.abp, containing
the parameters described above for the HyperChem program, can be obtained from the author on request (e-mail at
holo@altis.chem.pg.gda.pl). The largest system calculated on the author’s PC was the same as for ArgusLab.
3 The eht params.dat file containing the parameters described above for the YAeHMOP program can be obtained
from the author on request (e-mail at holo@altis.chem.pg.gda.pl).
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Figure 3. Correlation of EH eigenvalues, εn, with PES ionization energies of molecules. The
ab initio STO-3G geometry and empirically adjusted and consistent parameter set of valence atomic
orbitals were used as inputs for EH calculations. Experimental IE values in eV are after [35].

that the proportionality constant k = 1.3681 differs considerably from that introduced by
Hoffmann [4] (k = 1.75) and used by many groups. However, in the common approach the
hydrogen atom 1s orbital exponent is changed substantially from its original free atom value
of ζ = 1.0.

5. An example of an application relevant to the interpretation of photoelectron spectra

As an example of an application, the problem of predicting characteristic peaks in PES is
considered. One hundred and six chemical compounds containing elements from hydrogen to
uranium of known experimental PES data have been chosen [35]. The structures of compounds
have been obtained by ab initio STO-3G energy minimization. Then EHT calculations were
performed using the weighted Wolfsberg–Helmholz formula for Hµν [33] and k = 1.3681.
The principal use of PE spectroscopy is to determine the binding energies of the atomic and
molecular orbitals. Ideally, when PE spectra are taken with a monochromatic photon source,
one and only one PE peak will occur corresponding to each of the molecular orbitals since the
binding energy is related to the PE energy. The binding energy of a given molecular orbital is
the difference between the total energies of the initial and the final states, the initial state being
the neutral molecule and the final state being the molecular ion in which an electron from the
given orbital has been removed. Rather than using calculations of the total energies of the
initial and final states in order to compare with experimental binding energies, the EH model
employs eigenvalues calculated for the molecular orbitals of the neutral molecule on the basis
of Koopmans’ approximation. In the approximation, calculated eigenvalues εn are set equal to
the binding energies of the frozen molecular orbitals. In this way, the eigenvalues are related
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to the adiabatic binding energy by the expression (12)

−εn = Ebin(n) + ER, (12)

where ER is the relaxation energy. In comparing experimental binding energies with theoretical
calculations, it is most proper to use the onset of the vibrational envelope where v′ = 0 since the
adiabatic binding energy has a well-defined meaning. However, for spectra of more complex
molecules it is often most practical to report the peak of the vibrational envelope, which is
called the vertical ionization potential. The results of calculations are shown in figure 3 as
the correlation between the −εn and PES ionization energies for 745 occupied orbitals. The
mean error value of −εn is −0.38 eV, suggesting that no systematic error exist. The standard
deviation of computed orbital energies is 1.58 eV and the maximal error is equal 5.65 eV for
the Fe(PF3)5 molecule. The ‘failures’ found could be caused by the applied STO-3G geometry
or the proposed parameter set, or they can originate from the EHT approximations [6].

6. Concluding remarks

Obviously the test presented above cannot be treated as an exhaustive one. However, it suggests
that the valence orbital single-ζ exponents and orbital energies found perform well at least
for the interpretation of PES data. Additional tests not reported in this work show that the
proposed empirically adjusted and consisted set of valence orbital parameters is adequate for
a qualitative structure–property correlation analysis comparable with the common traditional
one popularized by Hoffmann. If one would like to obtain results compatible with the existing
huge amount of literature data, then simply change the hydrogen atom orbital exponent to
ζ = 1.3 and Hückel constant to k = 1.75.
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